Difference between revisions of "Oolite JavaScript Reference: Vector3D"
m (Changed convention of equivalences, added some more.) |
m (→Methods: replaced "function" (x2), added code tags) |
||
(41 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | + | <small>'''Prototype:''' <code>Object</code></small><br /> | |
+ | <small>'''Subtypes:''' none</small> | ||
− | The '''<code> | + | The '''<code>Vector3D</code>''' class represents a [http://en.wikipedia.org/wiki/Vector_%28spatial%29 geometrical vector] in three-dimensional space, in cartesian representation. It is used to represent positions, headings and velocities. Explaining vector geometry is beyond the scope of this document, but there are numerous tutorials on the web. |
=== Vector Expressions === | === Vector Expressions === | ||
− | All Oolite-provided functions which take a vector as an argument may instead be passed an [[Oolite | + | All Oolite-provided functions which take a vector as an argument may instead be passed an array of three numbers, or an [[Oolite JavaScript Reference: Entity|Entity]] (in which case the entity’s <code>[[Oolite JavaScript Reference: Entity#position|position]]</code> is used). In specifications, this is represented by arguments typed <code>vectorExpression</code>. For example, if <code>a</code> and <code>b</code> are vectors whose values are (0, 1, 0) and (1, 0, 0) respectively, the following are equivalent: |
− | |||
− | |||
var c = a.add(b); | var c = a.add(b); | ||
− | var d = a.add(1, 0, 0); | + | var d = a.add(Vector3D(1, 0, 0)); |
− | // c and | + | var e = a.add([1, 0, 0]); |
+ | // c, d and e are now all (1, 1, 0). | ||
== Properties == | == Properties == | ||
=== <code>x</code> === | === <code>x</code> === | ||
− | x | + | '''x''' : Number (read/write) |
The ''x'' co-ordinate of the vector. | The ''x'' co-ordinate of the vector. | ||
=== <code>y</code> === | === <code>y</code> === | ||
− | y | + | '''y''' : Number (read/write) |
The ''y'' co-ordinate of the vector. | The ''y'' co-ordinate of the vector. | ||
=== <code>z</code> === | === <code>z</code> === | ||
− | z | + | '''z''' : Number (read/write) |
The ''z'' co-ordinate of the vector. | The ''z'' co-ordinate of the vector. | ||
== Methods == | == Methods == | ||
=== Constructor === | === Constructor === | ||
− | new | + | '''new Vector3D'''([value : [[#Vector Expressions|vectorExpression]]]) : Vector3D |
Create a new vector with the specified value. If no value is provided, the vector is initialized to (0, 0, 0). | Create a new vector with the specified value. If no value is provided, the vector is initialized to (0, 0, 0). | ||
=== <code>add</code> === | === <code>add</code> === | ||
− | + | function '''add'''(v : [[#Vector Expressions|vectorExpression]]) : Vector3D | |
− | Returns the vector sum of the target and <code>[[#Vector Expressions|vectorExpression]]</code>. | + | Returns the vector sum of the target and <code>v</code>. |
+ | |||
+ | '''See Also:''' <code>[[#subtract|subtract]]()</code> | ||
+ | |||
+ | === <code>angleTo</code> === | ||
+ | function '''angleTo'''(v : [[#Vector Expressions|vectorExpression]]) : Number | ||
+ | Returns the angle (in radians) between the target and <code>[[#Vector Expressions|vectorExpression]]</code>. This is always a positive value between 0 and π. | ||
+ | |||
+ | <code>v.angleTo(u)</code> is equivalent to <code>Math.[https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Math/acos acos](v.[[#direction|direction]]().[[#dot|dot]](u.[[#direction|direction]]()))</code>. | ||
+ | |||
+ | === <code>cross</code> === | ||
+ | function '''cross'''(v : [[#Vector Expressions|vectorExpression]]) : Vector3D | ||
+ | Returns the [http://en.wikipedia.org/wiki/Vector_%28spatial%29#Cross_product cross product] of the target and <code>[[#Vector Expressions|vectorExpression]]</code>. | ||
− | === <code> | + | '''See Also:''' <code>[[#dot|dot]]()</code> |
− | + | ||
− | + | === <code>direction</code> === | |
+ | function '''direction'''() : Vector3D | ||
+ | Returns the [http://en.wikipedia.org/wiki/Unit_vector unit vector] with the same direction as the target. | ||
+ | |||
+ | <code>v.direction()</code> is equivalent to <code>v.[[#multiply|multiply]](1 / v.[[#magnitude|magnitude]]())</code>. | ||
+ | |||
+ | '''See Also:''' <code>[[#magnitude|magnitude]]()</code> | ||
=== <code>distanceTo</code> === | === <code>distanceTo</code> === | ||
− | + | function '''distanceTo'''(v : [[#Vector Expressions|vectorExpression]]) : Number | |
− | Returns the distance between the | + | Returns the distance between the source vector and <code>v</code>. If <code>v</code> is not a vector, then if it is an [[Oolite JavaScript Reference: Entity|Entity]] its position will be used; and if it is an array of three values (for example, <code>[x, y, z]</code> or <code>[1, 2, 3]</code>), it will be treated as a vector with those coordinates. |
− | |||
− | <code>v | ||
− | + | <code>u.distanceTo(v)</code> is equivalent to <code>u.[[#subtract|subtract]](v).[[#magnitude|magnitude]]()</code>. | |
− | |||
− | |||
− | <code>v. | + | '''CAUTION:''' If passed an invalid <code>v</code>, the method will return zero, not log an error. It is also incorrect to call <code>distanceTo</code> on something that is not a vector. For example: <code>this.ship.distanceTo(v)</code> is missing <code>position</code> and needs to be written as <code>this.ship.position.distanceTo(v)</code>. |
− | + | '''See Also:''' <code>[[#squaredDistanceTo|squaredDistanceTo]]()</code> | |
− | |||
− | |||
=== <code>dot</code> === | === <code>dot</code> === | ||
− | + | function '''dot'''(v : [[#Vector Expressions|vectorExpression]]) : Number | |
− | Returns the [http://en.wikipedia.org/wiki/Vector_%28spatial%29#Dot_product dot product] of the target and <code> | + | Returns the [http://en.wikipedia.org/wiki/Vector_%28spatial%29#Dot_product dot product] of the target and <code>v</code>. |
− | + | The dot product of two vectors says something how well they are aligned to each other. The dot product of two identical vectors is 1 while two vectors pointing in opposite direction result in a -1 result. Also you can't reliably compare two vectors with each other to see if they are identical. To check if <code>vector1 == vector2</code> you need the dot product : | |
− | + | vector1.dot(vector2) > 0.999 | |
− | |||
− | <code> | + | '''See Also:''' <code>[[#cross|cross]]()</code> |
− | === <code> | + | === <code>fromCoordinateSystem</code> === |
− | + | function '''fromCoordinateSystem'''(system : String) : Vector3D | |
− | + | Convert a vector from an [[Oolite coordinate systems|abstract coordinate system]] to absolute coordinates. <code>system</code> must be a three-letter string specifying an abstract coordinate system. | |
− | + | '''Important:''' | |
− | + | Vectors do not “know” which coordinate system they’re in. The script must keep track of that. If you add together vectors in different coordinate systems the result will be nonsense, just as if you added measurements in different units without appropriate conversions. | |
− | |||
− | + | '''Example:''' | |
+ | this.halfway = Vector3D(0, 0, 0.5).fromCoordinateSystem("wpu"); | ||
+ | // Equivalent: Vector3D.interpolate([0, 0, 0], S.mainPlanet, 0.5) | ||
− | + | '''See Also:''' <code>[[#toCoordinateSystem|toCoordinateSystem]]()</code> | |
− | |||
− | |||
− | |||
− | <code> | ||
=== <code>magnitude</code> === | === <code>magnitude</code> === | ||
− | + | function '''magnitude'''() : Number | |
Returns the magnitude (or length) of the vector. | Returns the magnitude (or length) of the vector. | ||
+ | |||
+ | '''See Also:''' <code>[[#squaredMagnitude|squaredMagnitude]]()</code>, <code>[[#direction|direction]]()</code> | ||
+ | |||
+ | === <code>multiply</code> === | ||
+ | function '''multiply'''(f : Number) : Vector3D | ||
+ | Returns the product of the target and <code>f</code>. This has the effect of scaling the vector by the factor <code>f</code>. | ||
+ | |||
+ | === <code>rotateBy</code> === | ||
+ | function '''rotateBy'''(q : [[Oolite JavaScript Reference: Quaternion#Quaternion Expressions|quaternionExpression]]) : Vector3D | ||
+ | Apply the rotation specified by <code>q</code> to the target vector. | ||
+ | |||
+ | === <code>rotationTo</code> === | ||
+ | function '''rotationTo'''(v : [[#Vector Expressions|vectorExpression]] [, maxArc : Number]) : [[Oolite JavaScript Reference: Quaternion|Quaternion]] | ||
+ | Returns a [[Oolite JavaScript Reference: Quaternion|quaternion]] corresponding to a rotation from the target vector to <code>v</code>. The optional parameter <code>maxArc</code> specifies a maximum rotation angle; if the angle between the target and <code>v</code> is greater than <code>maxArc</code> radians, a rotation of <code>maxArc</code> radians towards <code>vectorExpression</code> is generated instead. | ||
+ | |||
+ | Both the target and <code>v</code> must be normalized. The vectors must not be antiparallel (180° apart), since the axis of rotation is undefined in this case. | ||
+ | |||
+ | '''Example:''' | ||
+ | var orientation = myVector.rotationTo([0, 0, 1]) | ||
+ | This will generate a quaternion were the <code>forwardVector</code> is pointing in the same direction as <code>myVector</code>. (<code>[0, 0, 1]</code> is equal to the <code>forwardVector</code> of the identity quaternion.) | ||
+ | |||
+ | === <code>squaredDistanceTo</code> === | ||
+ | function '''squaredDistanceTo'''(v: [[#Vector Expressions|vectorExpression]]) : Number | ||
+ | Returns the square of the distance between the source vector and vector <code>v</code>. If <code>v</code> is not a vector, then if it is an [[Oolite JavaScript Reference: Entity|Entity]] its position will be used; and if it is an array of three values (for example, <code>[x, y, z]</code> or <code>[1, 2, 3]</code>), it will be treated as a vector with those coordinates. | ||
+ | |||
+ | <code>u.squaredDistanceTo(v)</code> is equivalent to <code>u.[[#distanceTo|distanceTo]](v) * u.[[#distanceTo|distanceTo]](v)</code>, or <code>u.[[#subtract|subtract]](v).[[#squaredMagnitude|squaredMagnitude]]()</code>. | ||
+ | |||
+ | '''CAUTION:''' If passed an invalid <code>v</code>, the method will return zero, not log an error. It is also incorrect to call <code>squaredDistanceTo</code> on something that is not a vector. For example: <code>this.ship.squaredDistanceTo(v)</code> is missing <code>position</code> and needs to be written as <code>this.ship.position.squaredDistanceTo(v)</code>. | ||
+ | |||
+ | '''See Also:''' <code>[[#distanceTo|distanceTo]]()</code> | ||
=== <code>squaredMagnitude</code> === | === <code>squaredMagnitude</code> === | ||
− | + | function '''squaredMagnitude'''() : Number | |
Returns the square of the magnitude of the vector. | Returns the square of the magnitude of the vector. | ||
<code>v.squaredMagnitude()</code> is equivalent to <code>v.[[#magnitude|magnitude]]() * v.[[#magnitude|magnitude]]()</code>. | <code>v.squaredMagnitude()</code> is equivalent to <code>v.[[#magnitude|magnitude]]() * v.[[#magnitude|magnitude]]()</code>. | ||
− | === <code> | + | === <code>subtract</code> === |
− | Vector | + | function '''subtract'''(v : [[#Vector Expressions|vectorExpression]]) : Vector3D |
− | + | Returns the vector difference between the target and <code>v</code>. | |
+ | |||
+ | '''See Also:''' <code>[[#add|add]]()</code> | ||
+ | |||
+ | === <code>toArray</code> === | ||
+ | function '''toArray'''() : Array | ||
+ | Returns an array of the vector’s components, in the order <code>[x, y, z]</code>. <code>v.toArray()</code> is equivalent to <code>[v.x, v.y, v.z]</code>. | ||
+ | |||
+ | === <code>toCoordinateSystem</code> === | ||
+ | function '''toCoordinateSystem'''(system : String) : Vector3D | ||
+ | Convert a vector from absolute coordinates to an [[Oolite coordinate systems|abstract coordinate system]]. <code>system</code> must be a three-letter string specifying an abstract coordinate system. The target of the method must be a vector in absolute coordinates. (To convert a vector from one abstract coordinate system to another, you must first call code>[[#fromCoordinateSystem|fromCoordinateSystem]]()</code>, then <code>toCoordinateSystem()</code>.) | ||
+ | |||
+ | '''Important:''' | ||
+ | Vectors do not “know” which coordinate system they’re in. The script must keep track of that. If you add together vectors in different coordinate systems the result will be nonsense, just as if you added measurements in different units without appropriate conversions. | ||
+ | |||
+ | '''Example:''' | ||
+ | Vector3D(0, 0, 226380).toCoordinateSystem("wpu") | ||
+ | // In Lave system, this returns (0, 0, 0.5). | ||
+ | |||
+ | '''See Also:''' <code>[[#fromCoordinateSystem|fromCoordinateSystem]]()</code> | ||
+ | |||
+ | === <code>tripleProduct</code> === | ||
+ | function '''tripleProduct'''(v : [[#Vector Expressions|vectorExpression]], w : [[#Vector Expressions|vectorExpression]]) : Number | ||
+ | Returns the [http://en.wikipedia.org/wiki/Vector_%28spatial%29#Triple_product triple product] of the target, <code>v</code> and <code>w</code>. | ||
+ | |||
+ | <code>u.tripleProduct(v, w)</code> is equivalent to <code>u.[[#dot|dot]](v.[[#cross|cross]](w))</code>. | ||
+ | |||
+ | == Static methods == | ||
+ | |||
+ | === <code>interpolate</code> === | ||
+ | function '''interpolate'''(u : [[#Vector Expressions|vectorExpression]], v : [[#Vector Expressions|vectorExpression]], where : Number) : Vector3D | ||
+ | Returns a point on the line between <code>u</code> and <code>v</code>. If <code>where</code> is 0, the result is <code>u</code>. If <code>where</code> is 1, the result is <code>v</code>. If <code>where</code> is 0.5, the result is half way between <code>u</code> and <code>v</code>. Values of <code>where</code> outside the range [0, 1] are valid; for instance, <code>Vector3D.interpolate(u, v, -1)</code> returns a point as far from <code>u</code> as <code>v</code> is, but in the opposite direction. | ||
+ | |||
+ | <code>Vector3D.interpolate(u, v, where)</code> is equivalent to <code>u.[[#add|add]](v.[[#subtract|subtract]](u).[[#multiply|multiply]](where))</code>, or <code>u.[[#multiply|multiply]](1 - where).[[#add|add]](v. [[#multiply|multiply]](where))</code>. | ||
+ | |||
+ | === <code>random</code> === | ||
+ | function '''random'''([maxLength : Number]) : Vector3D | ||
+ | Returns a vector of random length up to <code>maxLength</code>, in a random direction. If <code>maxLength</code> is not specified (or not a number), 1.0 is used. These vectors are uniformly distributed within the unit sphere, which has the effect that longer vectors are more common than shorter ones. Use <code>Vector3D.[[#randomDirectionAndLength|randomDirectionAndLength]]()</code> if an even length distribution is desired. | ||
+ | |||
+ | In the following image, the cloud on the left was made with the 2D equivalent of <code>random()</code>, and the image on the right was made with the 2D equivalent of <code>randomDirectionAndLength()</code>.<br />[[Image:Randomvectordistribution.png]] | ||
+ | |||
+ | '''See Also:''' <code>[[#randomDirection|randomDirection]]()</code>, <code>[[#randomDirectionAndLength|randomDirectionAndLength]]()</code> | ||
+ | |||
+ | === <code>randomDirection</code> === | ||
+ | function '''randomDirection'''([scale : Number]) : Vector3D | ||
+ | Returns a vector of length <code>scale</code>, in a random direction. If <code>scale</code> is not specified (or not a number), 1.0 is used. | ||
+ | |||
+ | '''See Also:''' <code>[[#random|random]]()</code>, <code>[[#randomDirectionAndLength|randomDirectionAndLength]]()</code> | ||
− | === <code> | + | === <code>randomDirectionAndLength</code> === |
− | + | function '''randomDirectionAndLength'''([maxLength : Number]) : Vector3D | |
− | Returns a | + | Returns a vector of random length up to <code>maxLength</code>, in a random direction. If <code>maxLength</code> is not specified (or not a number), 1.0 is used. These vectors have a uniform distribution of magnitude (all lengths are equally likely), but cluster towards the origin. Use <code>Vector3D.[[#random|random]]()</code> if an even spacial distribution is desired. |
+ | '''See Also:''' <code>[[#random|random]]()</code>, <code>[[#randomDirection|randomDirection]]()</code> | ||
− | [[Category:Oolite | + | [[Category:Oolite JavaScript Reference]] |
Latest revision as of 19:49, 28 October 2022
Prototype: Object
Subtypes: none
The Vector3D
class represents a geometrical vector in three-dimensional space, in cartesian representation. It is used to represent positions, headings and velocities. Explaining vector geometry is beyond the scope of this document, but there are numerous tutorials on the web.
Vector Expressions
All Oolite-provided functions which take a vector as an argument may instead be passed an array of three numbers, or an Entity (in which case the entity’s position
is used). In specifications, this is represented by arguments typed vectorExpression
. For example, if a
and b
are vectors whose values are (0, 1, 0) and (1, 0, 0) respectively, the following are equivalent:
var c = a.add(b); var d = a.add(Vector3D(1, 0, 0)); var e = a.add([1, 0, 0]); // c, d and e are now all (1, 1, 0).
Properties
x
x : Number (read/write)
The x co-ordinate of the vector.
y
y : Number (read/write)
The y co-ordinate of the vector.
z
z : Number (read/write)
The z co-ordinate of the vector.
Methods
Constructor
new Vector3D([value : vectorExpression]) : Vector3D
Create a new vector with the specified value. If no value is provided, the vector is initialized to (0, 0, 0).
add
function add(v : vectorExpression) : Vector3D
Returns the vector sum of the target and v
.
See Also: subtract()
angleTo
function angleTo(v : vectorExpression) : Number
Returns the angle (in radians) between the target and vectorExpression
. This is always a positive value between 0 and π.
v.angleTo(u)
is equivalent to Math.acos(v.direction().dot(u.direction()))
.
cross
function cross(v : vectorExpression) : Vector3D
Returns the cross product of the target and vectorExpression
.
See Also: dot()
direction
function direction() : Vector3D
Returns the unit vector with the same direction as the target.
v.direction()
is equivalent to v.multiply(1 / v.magnitude())
.
See Also: magnitude()
distanceTo
function distanceTo(v : vectorExpression) : Number
Returns the distance between the source vector and v
. If v
is not a vector, then if it is an Entity its position will be used; and if it is an array of three values (for example, [x, y, z]
or [1, 2, 3]
), it will be treated as a vector with those coordinates.
u.distanceTo(v)
is equivalent to u.subtract(v).magnitude()
.
CAUTION: If passed an invalid v
, the method will return zero, not log an error. It is also incorrect to call distanceTo
on something that is not a vector. For example: this.ship.distanceTo(v)
is missing position
and needs to be written as this.ship.position.distanceTo(v)
.
See Also: squaredDistanceTo()
dot
function dot(v : vectorExpression) : Number
Returns the dot product of the target and v
.
The dot product of two vectors says something how well they are aligned to each other. The dot product of two identical vectors is 1 while two vectors pointing in opposite direction result in a -1 result. Also you can't reliably compare two vectors with each other to see if they are identical. To check if vector1 == vector2
you need the dot product :
vector1.dot(vector2) > 0.999
See Also: cross()
fromCoordinateSystem
function fromCoordinateSystem(system : String) : Vector3D
Convert a vector from an abstract coordinate system to absolute coordinates. system
must be a three-letter string specifying an abstract coordinate system.
Important: Vectors do not “know” which coordinate system they’re in. The script must keep track of that. If you add together vectors in different coordinate systems the result will be nonsense, just as if you added measurements in different units without appropriate conversions.
Example:
this.halfway = Vector3D(0, 0, 0.5).fromCoordinateSystem("wpu"); // Equivalent: Vector3D.interpolate([0, 0, 0], S.mainPlanet, 0.5)
See Also: toCoordinateSystem()
magnitude
function magnitude() : Number
Returns the magnitude (or length) of the vector.
See Also: squaredMagnitude()
, direction()
multiply
function multiply(f : Number) : Vector3D
Returns the product of the target and f
. This has the effect of scaling the vector by the factor f
.
rotateBy
function rotateBy(q : quaternionExpression) : Vector3D
Apply the rotation specified by q
to the target vector.
rotationTo
function rotationTo(v : vectorExpression [, maxArc : Number]) : Quaternion
Returns a quaternion corresponding to a rotation from the target vector to v
. The optional parameter maxArc
specifies a maximum rotation angle; if the angle between the target and v
is greater than maxArc
radians, a rotation of maxArc
radians towards vectorExpression
is generated instead.
Both the target and v
must be normalized. The vectors must not be antiparallel (180° apart), since the axis of rotation is undefined in this case.
Example:
var orientation = myVector.rotationTo([0, 0, 1])
This will generate a quaternion were the forwardVector
is pointing in the same direction as myVector
. ([0, 0, 1]
is equal to the forwardVector
of the identity quaternion.)
squaredDistanceTo
function squaredDistanceTo(v: vectorExpression) : Number
Returns the square of the distance between the source vector and vector v
. If v
is not a vector, then if it is an Entity its position will be used; and if it is an array of three values (for example, [x, y, z]
or [1, 2, 3]
), it will be treated as a vector with those coordinates.
u.squaredDistanceTo(v)
is equivalent to u.distanceTo(v) * u.distanceTo(v)
, or u.subtract(v).squaredMagnitude()
.
CAUTION: If passed an invalid v
, the method will return zero, not log an error. It is also incorrect to call squaredDistanceTo
on something that is not a vector. For example: this.ship.squaredDistanceTo(v)
is missing position
and needs to be written as this.ship.position.squaredDistanceTo(v)
.
See Also: distanceTo()
squaredMagnitude
function squaredMagnitude() : Number
Returns the square of the magnitude of the vector.
v.squaredMagnitude()
is equivalent to v.magnitude() * v.magnitude()
.
subtract
function subtract(v : vectorExpression) : Vector3D
Returns the vector difference between the target and v
.
See Also: add()
toArray
function toArray() : Array
Returns an array of the vector’s components, in the order [x, y, z]
. v.toArray()
is equivalent to [v.x, v.y, v.z]
.
toCoordinateSystem
function toCoordinateSystem(system : String) : Vector3D
Convert a vector from absolute coordinates to an abstract coordinate system. system
must be a three-letter string specifying an abstract coordinate system. The target of the method must be a vector in absolute coordinates. (To convert a vector from one abstract coordinate system to another, you must first call code>fromCoordinateSystem(), then toCoordinateSystem()
.)
Important: Vectors do not “know” which coordinate system they’re in. The script must keep track of that. If you add together vectors in different coordinate systems the result will be nonsense, just as if you added measurements in different units without appropriate conversions.
Example:
Vector3D(0, 0, 226380).toCoordinateSystem("wpu") // In Lave system, this returns (0, 0, 0.5).
See Also: fromCoordinateSystem()
tripleProduct
function tripleProduct(v : vectorExpression, w : vectorExpression) : Number
Returns the triple product of the target, v
and w
.
u.tripleProduct(v, w)
is equivalent to u.dot(v.cross(w))
.
Static methods
interpolate
function interpolate(u : vectorExpression, v : vectorExpression, where : Number) : Vector3D
Returns a point on the line between u
and v
. If where
is 0, the result is u
. If where
is 1, the result is v
. If where
is 0.5, the result is half way between u
and v
. Values of where
outside the range [0, 1] are valid; for instance, Vector3D.interpolate(u, v, -1)
returns a point as far from u
as v
is, but in the opposite direction.
Vector3D.interpolate(u, v, where)
is equivalent to u.add(v.subtract(u).multiply(where))
, or u.multiply(1 - where).add(v. multiply(where))
.
random
function random([maxLength : Number]) : Vector3D
Returns a vector of random length up to maxLength
, in a random direction. If maxLength
is not specified (or not a number), 1.0 is used. These vectors are uniformly distributed within the unit sphere, which has the effect that longer vectors are more common than shorter ones. Use Vector3D.randomDirectionAndLength()
if an even length distribution is desired.
In the following image, the cloud on the left was made with the 2D equivalent of random()
, and the image on the right was made with the 2D equivalent of randomDirectionAndLength()
.
See Also: randomDirection()
, randomDirectionAndLength()
randomDirection
function randomDirection([scale : Number]) : Vector3D
Returns a vector of length scale
, in a random direction. If scale
is not specified (or not a number), 1.0 is used.
See Also: random()
, randomDirectionAndLength()
randomDirectionAndLength
function randomDirectionAndLength([maxLength : Number]) : Vector3D
Returns a vector of random length up to maxLength
, in a random direction. If maxLength
is not specified (or not a number), 1.0 is used. These vectors have a uniform distribution of magnitude (all lengths are equally likely), but cluster towards the origin. Use Vector3D.random()
if an even spacial distribution is desired.
See Also: random()
, randomDirection()